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Synopsis
We evaluated images from undersampled data using a U-Net with common metrics (SSIM and NRMSE) and with a model for human observer detection,

the sparse di�erence-of-Gaussians (S-DOG). We also studied how the results vary when changing the loss function and training set size. We saw that the

S-DOG model would choose an undersampling of 2X while SSIM and NRMSE would choose 3X. In previous work, human observers also chose a 2X

acceleration. The S-DOG model led to the same conclusion as the human observers. This result was consistent with changes in training set size and loss

function.

Purpose
Determining the acceptable rate of undersampling depends on the task for which the images will be used. Artifacts from neural networks are di�cult to

characterize and this makes it particularly applicable to use a task-based  approach to image quality for neural network reconstructions. Evaluations of

reconstructions generally use measures of distance from a fully sampled image e.g. normalized root mean squared error (NRMSE) or structural similarity

(SSIM) . In this work, we evaluate undersampled reconstructions with a U-Net convolutional neural network with a SSIM loss and MSE loss using the

detection of a small signal as the performance metric. We compared the choice of undersampling that would best balance image quality and acquisition

speed resulting from NRMSE and SSIM metrics with the choice that would arise from detecting a small signal in the reconstructed images by model of

human observer performance, the S-DOG .

Methods
The k-space data used in this study came from fully sampled �uid-attenuated inversion recovery (FLAIR) acquisitions from the fastMRI open source

dataset  The fully sampled 320 x 320 background images were generated in the BART  environment from the multi-coil data by R=1 SENSE combination

with coil maps estimated via the sum of squares approach using the central 16 k-space lines. In order to generate the fully sampled images with the

signal, the multi-coil k-space data of the signal (a small disk with radius = 0.25 pixels blurred by a Gaussian kernel, σ=1 pixel) was added to the

background k-space data before reconstruction. The undersampling for the di�erent accelerations were done from the single coil image. We kept 16 k-

space lines around the zero frequency (5% of the data) and everywhere else collected every k line with k = 2,3,4 and 5. A U-Net  with 64 channels in the

�rst layer, and a 0.1 dropout was used but with a ReLU and sigmoid activation functions at the end.

For the SSIM loss function we used 1 minus SSIM. We ran 5-fold cross validation studies each trained with 500 or 4000 background images to evaluate

the neural network reconstructions based on SSIM and NRMSE. The standard deviation for these metrics was computed from the �ve folds. We also

repeated this study with a MSE loss function.

For the observer studies, we used data that was not included in either the small (500) or large (4000) training set. The two-alternative forced choice (2-

AFC) studies (Figure 1) force the observer to choose in which of two images the signal is located. Each human observer did 200 such trials for each

condition. All the observer studies were done using a Barco MDRC 2321 monitor in a dark room.

In previous work  using the SSIM loss function and the small training set, we found that the human observer 2-AFC performance led to choosing an

acceleration of 2X to avoid a large drop in performance while NRMSE and SSIM would choose 3X. Here we use a model observer which reduces the

number of observer trials needed to reach a similar conclusion. The sparse di�erence-of-Gaussians (S-DOG) model uses channels in the frequency

domain (Figure 2) which are inspired by channels in the human visual system .

Results & Discussion
Figure 3 and Figure 4 shows that the standard metrics (SSIM and NRMSE) are consistent in the choice of undersampling of 3X across training set size and

loss function (SSIM and MSE). As expected these metrics slightly improved with training set size. Subjectively (Figure 5) and through the model observer

results, the detection of signals did not seem to change much with training set and loss function.

In this work, the S-DOG percent correct had the �rst big drop between 2X and 3X undersampling just as the human observers . This result is

encouraging in pursuing the S-DOG as a potential model for predicting human performance in terms of the decision that would be made for how much

to undersample.

In this study, four observers carried out 200 2-AFC trials for the 3x acceleration for each of the 4 combinations of SSIM and MSE Loss and the small and

large training set. The average human percent correct remained fairly constant for all conditions (0.79,0.80,0.83,0.79) with the slightly higher value for

the small data set with the MSE loss. A limitation of the S-DOG is that it is linear. If humans are doing non-linear processing in the detection task, it would

not be able to model it. This may be one of the reasons why the S-DOG did not match the human results quantitatively since the performance of the S-

DOG without internal noise (it’s highest performance) was below the average human performance. Exploration of other model observers  is part of our

future work.

Conclusion
For the U-Net that we studied, the S-DOG model observer would choose the same undersampling as the human observers. We also found that

increasing the training set size or varying the loss function between MSE and SSIM did not a�ect the choice of undersampling when using the SSIM and

NRMSE metrics which would choose a higher undersampling than the human observers or the S-DOG model.
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Figures

Figure 1 Sample 2-AFC prompt for human observer studies using images trained with MSE Loss and small (500 image) dataset. Image on left contains

signal. The trial consists of determining which of the two images contains the signal which is always in the center. The percent correct reported is for 200

trials for each observer and condition.

Figure 2. Frequency band-pass channels used by the S-DOG model observer inspired by the human visual system which requires higher contract for low

and high frequencies .

Figure 3. Table containing 500 image (Small) and 4000 image (Large) SSIM Loss 5-fold cross validation SSIM and NRMSE for the 4 acceleration schemes.

Format is mean/standard deviation, and the mean and standard deviation were taken across the �ve test-train splits. The standard deviations for the S-

DOG were done using a bootstrap estimate using 1000 samples. The scores in bold correspond to the preferred accelerations for each metric. The S-

DOG model suggests that the �rst largest drop in image quality would be from 2X to 3X acceleration just as we saw previously with human observers.

Figure 4. Table containing 500 image (Small) and 4000 image (Large) MSE Loss 5-fold cross validation SSIM and NRMSE for the 4 acceleration schemes

versions of the U-Net. Format is mean/standard deviation, and the mean and standard deviation were taken across the �ve test-train splits. The scores
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in bold correspond to the preferred accelerations for each metric. Although the decrease between 2 times and 3 times acceleration for S-DOG is smaller

compared to the SSIM Loss dataset, the pattern is still consistent.

Figure 5. Comparison of MSE and SSIM Loss for 500 (small) and 4000 (large) image training sets with and without the signal. The signal is a bright

intensity disk in the center of the cropped region in the last row. The 3x undersampling scheme was used.


